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Multistage Stochastic Unit Commitment Using
Stochastic Dual Dynamic Integer Programming

Jikai Zou, Shabbir Ahmed, Senior Member, and Andy Sun, Senior Member

Abstract—Unit commitment (UC) is a key operational problem
in power systems for the optimal schedule of daily generation
commitment. Incorporating uncertainty in this already difficult
mixed-integer optimization problem introduces significant com-
putational challenges. Most existing stochastic UC models con-
sider either a two-stage decision structure, where the commitment
schedule for the entire planning horizon is decided before the
uncertainty is realized, or a multistage stochastic programming
model with relatively small scenario trees to ensure tractability.
We propose a new type of decomposition algorithm, based on
the recently proposed framework of Stochastic Dual Dynamic
Integer Programming (SDDiP), to solve the multistage stochastic
unit commitment (MSUC) problem. We propose a variety of
computational enhancements to SDDiP, and conduct systematic
and extensive computational experiments to demonstrate that the
proposed method is able to handle elaborate stochastic processes
and can solve MSUCs with a huge number of scenarios that are
impossible to handle by existing methods.

Index Terms—Unit commitment, multistage stochastic integer
programming, stochastic dual dynamic integer programming

NOMENCLATURE

Indices
n,m Node in the scenario tree
i Generation unit
b Load bus
` Transmission line
t Decision stage
t(n) Decision stage of node n

Sets
T Scenario tree
B Set of all buses
G Set of generation units
Gb Set of generation units at bus b
D Set of demand bus
L Set of all transmission lines
P(n, t) Path from the t-th ancestor node of n to n

Parameters
pn Probability associated with node n
Si, Si Start-up/shut-down cost of generation unit i
Cp Penalty cost
Dnb Load demand of bus b at node n
Fl Maximum flow capacity of line `
Kl Shift vectors of transmission line `
P i, P i Max/min output of generation unit i
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Rt Reserve requirement in period t
∆i, ∆i Regular ramping rate for generation unit i
∆SU, ∆SD Start-up/shut-down ramping rate for unit i
UTi, DTi Minimum up/down time for generation unit i

Variables
xni State of unit i at node n, equals 1 if on, 0 otherwise
yni Generation by unit i at node n
uni Start-up decision for unit i, equals 1 if it is turned

on at node n, 0 otherwise
vni Shut-down decision for unit i, equals 1 if it is turned

off at node n, 0 otherwise
rni Reserved spinning capacity from unit i at node n
δ+n Total unsatisfied demand at node n
δ−n Total over-generation at node n

I. INTRODUCTION

A. Motivation

UNIT commitment (UC) is one of the key operational
problems in power systems. It is used by system operators

to decide a commitment schedule of generation units for the
next day or week, under which the forecast demand can be met
in the most cost efficient way. Besides satisfying electricity
load, the commitment decisions also need to satisfy various
physical constraints, such as generation capacity, minimum up
and down time, ramping limit, as well as the flow limit of
transmission lines.

In recent years, an increasing penetration of renewable energy
has cast another layer of complexity to the UC problem. Due
to the intermittent and stochastic nature renewable energy,
power system operators need to model uncertainty and to
solve the resulting large-scale computation problems. Stochastic
optimization has been utilized in UC problems to achieve
this goal. There are two types of stochastic models, namely
two-stage stochastic UC model and multistage stochastic UC
model, that have been explored. In a two-stage stochastic UC
model, the UC decision is the first-stage decision, which is
determined in the day before the uncertainty is realized and
thus is not adaptive to specific uncertainty realizations. In
contrast, a multistage stochastic UC (MSUC) model handles
uncertainty dynamically in the sense that the UC decision is a
function of the realization of load and renewable generation,
i.e. the UC decision adapts to uncertainty realizations.

There exists an extensive literature on two-stage and mul-
tistage stochastic UC models. We refer the reader to the
comprehensive surveys [1; 2; 3] for the progress in the
two-stage setting, and summarize related work in multistage
stochastic UC in the next section.
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B. Related Work on Multistage Stochastic UC

The benefit of the multistage approach in terms of increasing
system flexibility and reducing operation costs compared to the
deterministic or two-stage approaches has been successfully
demonstrated in various previous works [3]. In a recent work [4]
the authors provide a theoretical analysis on the value of
multistage stochastic optimization in UC. They also provide
a numerical study on a small 10 generator instance from
the literature and show that the gap between the objective
of the two-stage and multistage model can be up to 3.5%.
However this advantage comes at the expense of significant
computational cost.

A major line of research on MSUC has been the devel-
opment of advanced decomposition algorithms. Two different
approaches have been proposed, namely unit decomposition and
scenario decomposition. In unit decomposition, constraints that
couple generation units, such as load balancing, transmission,
and spinning reserve constraints, are relaxed so that each
subproblem corresponds to a single generation unit. Such
a decomposition scheme was first studied in [5] and has
been extended by incorporating electricity contracts and spot-
market prices [6]. Proximal bundle method (cf. [7]) is used in
solving the Lagrangian dual problem [8; 9]. A Dantzig-Wolfe
decomposition approach is studied in [10], where the single-
unit subproblems are solved by dynamic programming and
their schedules are added back to the restricted master problem.

Alternatively, the scenario decomposition approach attempts
to relax the coupling constraints among scenarios, usually
referred to as non-anticipativity constraints. The ensuing
subproblems then correspond to single scenarios. Different
methods have been applied to solve the relaxed problem, such
as the progressive hedging algorithm [11] and Dantzig-Wolfe
decomposition [12; 13]. Besides the development of decom-
position techniques, there have been efforts on strengthening
the formulation using effective cutting planes. A majority of
these work focus on the two-stage setting (e.g., [14; 15; 16],
etc.). Recently, cutting planes have been studied for multistage
models [17; 18].

The previously discussed solution methods are usually
applicable only to relatively small scenario trees, and can
quickly run into scalability issues on practical problems
with large scenarios trees. To deal with large scenario trees,
Pereira and Pinto [19] propose a popular, sampling-based
variant of nested Benders decomposition, known as Stochastic
Dual Dynamic Programming (SDDP) to solve multistage
stochastic linear programs. It has been widely applied to
multistage stochastic hydro-thermal scheduling problems (see
e.g. [20; 21; 22; 23; 24; 25].) Existing attempts to extend
SDDP to multistage stochastic mixed-integer programs have
focused on exploiting convex relaxations of the cost-to-go
function (see e.g. [26] for approximating the bilinear terms
by the McCormick envelopes and [27] for using Lagrangian
relaxation to smoothen the nonconvex shape of the cost-to-go
functions).

To overcome the intrinsic limitation of Benders-type de-
composition for multistage stochastic integer programs, a new
algorithm called Stochastic Dual Dynamic integer Programming

(SDDiP) is developed in [28], which guarantees to find the
exact optimal solution of a multistage stochastic mixed integer
program with binary state variables and mixed-integer recourse
variables. This is accomplished by a new family of valid cuts,
termed Lagrangian cuts, which are able to achieve strong
duality for mixed integer programs. SDDiP is also sampling-
based algorithm as SDDP, and exhibits promising scalability
on solving large-scale scenario trees.

C. Contributions

In this paper, we adapt the SDDiP algorithm to solve large-
scale MSUC problems under load and renewable generation
uncertainty. The key contributions of the paper are summarized
below.

1) We propose a dynamic programming based reformulation
of MSUC to adapt the SDDiP algorithm for a stage-
wise decomposition of the problem. To the best of our
knowledge, this is the first attempt to tackle the MSUC
problem using a stage-wise decomposition framework.
The proposed algorithm guarantees to return a multistage
unit commitment policy that the operators can use in the
real time commitment and dispatch to increase system
flexibility.

2) We propose several algorithmic development to signifi-
cantly reduce computation time of the SDDiP algorithm,
including (i) using a stabilized cutting plane algorithm,
the so-called level method, to compute the Lagrangian
cuts, (ii) a “hybrid” mixed-integer and linear modeling
approach with the notion of “breakstage” to reduce the
effective size of the scenario tree, and (iii) a parallel
implementation that significantly speeds up the backward
sweep of the proposed algorithm.

3) Extensive computational experiments are conducted on
the IEEE 14-bus and 118-bus systems. We study the
effectiveness of various valid inequalities for solving
the MSUC problem and the impact of breakstage. Our
experiments show that the proposed method can handle
MSUCs with a huge number of scenarios that existing
algorithms cannot handle.

The remainder of the paper is organized as follows. In
Section II, we describe the SDDiP algorithm and different
cut families. In Section III, we present the mathematical
formulation for MSUC. In Section IV, we describe various
computational enhancements of SDDiP for solving MSUC.
Sections V-VI discuss experiment settings and detailed compu-
tational results. Finally, we provide some concluding remarks
in Section VII.

II. A PRIMER ON SDDIP
A. Multistage Stochastic Integer Program

We start with a scenario tree formulation of a multistage
stochastic integer problem (MSIP).

min
xn,yn,zn

∑
n∈T

pngn(xn, yn) (1a)

s.t. ∀n ∈ T
(zn, xn, yn) ∈ Xn (1b)
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zn = xa(n), zn ∈ [0, 1]d (1c)

xn ∈ {0, 1}d, (1d)

where xn is the linking variable, also called state variable, of
node n in the scenario tree T , because node n’s decision xn
is linked to its ancestor node a(n)’s state xa(n) through (1b)
and (1c); yn is a local variable that only appears in node n’s
problem and (1c) is a redundant constraint that makes a local
copy zn of the ancestor’s state xa(n). This redundant constraint
turns out to be crucial for the success of SDDiP as we will
discuss below.

This formulation (1) is called multistage because the state
and local decisions xn, yn are associated with each node
in the scenario tree, therefore, can adapt to each specific
nodal realization of uncertainty. In terms of the UC problem,
such a formulation allows the UC decision at each hour to
adapt to specific uncertainty history up to that hour. Hence,
by solving (1), we get a policy or a contingency plan on
how to commit and dispatch generators for each possible
realization of scenarios. Such a policy is extremely flexible and
comprehensive. An operator can tailor this UC policy according
to specific operating environment.

B. Dynamic Programming Reformulation

Now we can write down the dynamic programming (DP)
reformulation for the multistage problem (1) as follows: For
root node n = 1 of the scenario tree,

(P1) min g1(x1, y1) +
∑

m∈C(1)

q1mQm(x1)

s.t. (1b)− (1d) (for n = 1)

and for each node n ∈ T \ {1},

(Pn) Qn(xa(n)) := min gn(xn, yn) +
∑

m∈C(n)

qnmQm(xn)

s.t. (1b)− (1d),

where qnm is the conditional probability from n to its
children node m. We will refer to Qn(·) as the optimal
value function (of xa(n)) at node n and denote the function
Qn(·) :=

∑
m∈C(n) qnmQm(·) as the expected cost-to-go

(ECTG) function at node n.

C. SDDiP Algorithm

The SDDiP algorithm assumes the scenario tree to be stage-
wise independent, i.e., for any two nodes n and n′ in stage t,
the set of their children nodes C(n) and C(n′) have the same
conditional probability distribution. Stage-wise dependency can
be modeled as stage-wise independence by properly extending
the state space. Once we have stage-wise independence, the
ECTG functions depend only on the stage rather than the
nodes, i.e., Qn(·) ≡ Qt(·) for all n in stage t. Each iteration
of SDDiP starts with sampling a subset of scenarios from the
scenario tree (Line 3 in Algorithm 1.)

1) Forward Step: In the forward step, SDDiP algorithm
proceeds stage-wise from t = 1 to T on the sampled scenarios
and solves DP recursion on an approximate convex piecewise
linear ECTG function at each stage. In particular, the stage
problem, P it (x

i
t−1, ψ

i
t, ξ

k
t ), in the i-th iteration is of the

following form:

Qi
t
(xit−1, ψ

i
t, ξ

k
t ) := min

xt,yt,zt
gt(xt, yt, ξ

k
t ) + ψit(xt) (2a)

s.t. (xt, yt, zt) ∈ Xt(ξ
k
t ) (2b)

zt = xit−1 (2c)

xt ∈ {0, 1}d, zt ∈ [0, 1]d, (2d)

where ξkt is the k uncertainty realization at stage k and the
approximate ECTG function ψit(·) is defined as:

ψit(xt) := min
{
θt : θt ≥ Lt, (3a)

θt ≥
1

Nt+1

Nt+1∑
j=1

(v`jt+1 + (π`jt+1)>xt), ∀` ≤ i− 1
}
. (3b)

The function ψit(xt) is the current convex lower-approximation
of the true ECTG function Qt(xt). Once a forward iteration is
completed, we have obtained a feasible solution {(xit, yit)}Tt=1

for the corresponding scenario.
2) Backward Step:: The backward step starts from the

last stage T . Given the solution xiT−1 from iteration i and
a particular uncertainty realization ξjT (1 ≤ j ≤ NT ), let RijT
be a relaxation of the forward problem P iT (xiT−1, ψ

i+1
T , ξjT ).

Note that ψiT ≡ 0 for all i ≥ 0. Solving RijT for each j
produces a linear inequality defined by (vijT , π

ij
T ) and it is valid

for the value function QT (xT−1, ξ
j
T ). Then the inequalities are

aggregated to obtain one of form (3b), which is valid for ECTG
function QT−1(xT−1). The lower approximation of the ECTG
function is updated from ψiT−1(·) to ψi+1

T−1(·). The backward
step then proceeds to stage T − 1. When the first stage is
completed, since we have solved a lower approximation of the
original problem, the optimal value of the first stage problem
is a valid lower bound of the original problem. A complete
description of the SDDiP algorithm is given in Algorithm 1.

A stopping criterion commonly used for SDDP-type algo-
rithms is to terminate when the gap UB−LB in Algorithm 1 is
small. Since UB is a statistical upper bound, some precaution
is needed for this criterion. See [29] for some discussion. We
use another simple stopping criterion to terminate the algorithm
once the lower bound stabilizes. See [28] for more discussions.

D. Cut Families in Backward Step

Different cutting plane methods can be used in Rijt in
the backward step. In this paper, we investigate three types:
standard Benders cuts, a type of Lagrangian cuts obtained
from a particular reformulation, and strengthened Benders cuts,
which are a byproduct of the Lagrangian cuts.

1) Benders cut: Benders cuts are widely used in stochastic
LP, but are also used in stochastic IP, providing a linear
relaxation to the IP problem. The main drawback is that Benders
cut are in general not tight for IP. Therefore, convergence of
SDDiP with Benders cuts is not guaranteed.
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Algorithm 1 :: Stochastic Dual Dynamic Integer Programming

1: Initialize: LB ← −∞, UB ← +∞, i← 1, and an initial
under-approximation {ψ1

t (·)}t=1,...,T

2: while some stopping criterion is not satisfied do
3: Sample M scenarios Ωi = {ξk1 , . . . , ξkT }k=1...,M

4: /* Forward step */
5: for k = 1, . . . ,M do
6: for t = 1, . . . , T do
7: solve forward problem P it (x

ik
t−1, ψ

i
t, ξ

k
t )

8: collect solution (xikt , y
ik
t , z

ik
t , θ

ik
t = ψit(x

ik
t ))

9: end for
10: uk ←

∑
t=1,...,T gt(x

ik
t , y

ik
t , ξ

k
t )

11: end for
12: /* Statistical upper bound update */
13: µ̂← 1

M

∑M
k=1 u

k and σ̂2 ← 1
M−1

∑M
k=1(uk − µ̂)2

14: UB ← µ̂+ zα/2
σ̂√
M

15: /* Backward step */
16: for t = T, . . . , 2 do
17: for k = 1, . . . ,M do
18: for j = 1, . . . , Nt do
19: solve a suitable relaxation (Rijt ) of the updated

problem P it (x
ik
t−1, ψ

i+1
n , ξjt ) and collect cut co-

efficients (vijt , π
ij
t )

20: end for
21: add cut in the form of (3b) to ψit−1 to get ψi+1

t−1
22: end for
23: end for
24: /* Lower bound update */
25: solve P i1(x̄0, ψ

i+1
1 ) and set LB to the optimal value

26: i← i+ 1
27: end while

2) Lagrangian cut: This family of cuts is based on solving
a Lagrangian dual of P it (x

i
t−1, ψ

i+1
t , ξjt ) by dualizing the

redundant constraint (2c) in (2). In particular, the relaxation
problem Rijt is defined as

(Rijt )

maxπt
min gt(xt, yt, zt) + ψit + π>t (xit−1 − zt)

s.t.(xt, yt, zt) ∈ Xt(ξ
j
t )

xt ∈ {0, 1}d, zt ∈ [0, 1]d.

The key property of (Rijt ) is that the Lagrangian dual has zero
duality gap when the state variable xt is binary [28]. This
guarantees that the Lagrangian cuts generated from (Rijt ) in
the backward step are tight.

3) Strengthened Benders cut.: The Lagrangian dual (Rijt )
may be difficult to solve to optimality. A heuristic is to solve the
inner minimization in (Rijt ) with a fixed dual solution obtained
from the LP dual problem. This cut has the same coefficients
as the Benders, but tighter constant term, therefore, can be
stronger than Benders cut. We call it strengthened Benders cut.

4) Illustration of convergence behavior of cut families:
Here we give a simple illustration of the typical convergence
behavior of the above three families of cuts. Figure 1 shows
the lower bound (red) and statistical upper bounds (green)
and a 95% confidence interval. We can see that Benders
(B) cuts never close the optimality gap, while the rest three

Strengthened Benders (SB), Lagrangian (L), and SB+L all close
the optimality gap. The figures also show the lower bounds
usually converge quite fast, which is typical for SDDP-type
algorithms. For more details, see [30, Chapter 3].

Fig. 1: Convergence behavior of different cut families.

III. FORMULATION OF MULTISTAGE STOCHASTIC UC

A. Problem Formulation

We first propose an MSUC formulation with uncertain net
load modeled by a scenario tree. Due to special structures of
this MSUC, the SDDiP algorithm cannot directly be applied.
We then discuss techniques to reformulate it such that SDDiP
can be used to solve it.

min
∑
n∈T

pn

[∑
i∈G

(
Siuni + Sivni + fi(yni)

)
+ Cp(δ

+
n + δ−n )

]
s.t.
∑
i∈G yni + δ+n − δ−n =

∑
b∈DDnb,∀n ∈ T (4a)∑

i∈G rni ≥ Rt(n), ∀n ∈ T (4b)∣∣∑
b∈BK`b

(∑
i∈Gb yni −Dnb

)∣∣ ≤ F`,∀` ∈ L, n ∈ T (4c)

yni + rni ≤ P ixni, yni ≥ P ixni, ∀i ∈ G, n ∈ T (4d)

yni − ya(n),i ≤ ∆SU
i uni + ∆ixa(n),i, ∀i ∈ G, n ∈ T (4e)

ya(n),i − yni ≤ ∆SD
i vni + ∆ixni, ∀i ∈ G, n ∈ T (4f)

xni − xa(n),i ≤ uni, ∀i ∈ G, n ∈ T (4g)
xni − xa(n),i = uni − vni, ∀i ∈ G (4h)∑

m∈P(n,UTi−1) umi ≤ xni, ∀i ∈ G, n ∈ T (4i)∑
m∈P(n,DTi−1) vmi ≤ 1− xni, ∀i ∈ G, n ∈ T (4j)

xni, uni, vni ∈ {0, 1}, yni, rni ≥ 0, ∀i ∈ G, n ∈ T . (4k)

In the above formulation, xni, uni, vni, yni are respectively
the commitment, start-up, shut-down binary decisions, and
continuous dispatch decision of generator i in node n of the
scenario tree, all of which are the state variables; rni is the
reserve level of generator i at node n and δ+n , δ

−
n are slack

variables in the energy balance constraint (4a), which are the
local continuous variables. The objective function consists of
the expectation of four terms, namely the start-up cost, the shut-
down cost, the dispatch cost, and the penalty from electricity
shortage or over generation. Energy balance constraint is
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enforced in (4a) and the requirement for total reserved capacity
at each stage in (4b). DC power flow equations are imposed
by (4c). Constraints (4d) specify the output capacities for
each generator. Ramping constraints are enforced by (4e)-(4f).
Constraints (4g)-(4h) link the generator states with commitment
decisions. Minimum up and down time constraints are enforced
by (4i)-(4j).

B. Reformulation of State Variables

One obstacle of applying SDDiP directly to MSUC (4) is
the minimum up and down time constraints (4i)-(4j), which
couple state variables uni, vni’s from more than two stages,
while SDDiP requires that the stage t problem depend only on
the state variables in stage t− 1. We propose a reformulation
of state variables to resolve this problem. In particular, we
create two sets of new variables at each node n: {u(k)ni , k =

0, . . . , UTi − 1} and {v(k)ni , k = 0, . . . , DTi − 1}. Constraints
(4i)-(4j) are then equivalent to the following set of inequalities:

∑UTi−1
k=0 u

(k)
ni ≤ xni,

∑DTi−1
k=0 v

(k)
ni ≤ 1− xni, (5a)

u
(0)
ni − uni = 0, v

(0)
ni − vni = 0, (5b)

u
(k)
ni = u

(k−1)
a(n),i, ∀k = 1, . . . , UTi − 1 (5c)

v
(k)
ni = v

(k−1)
a(n),i , ∀k = 1, . . . , DTi − 1. (5d)

As a result, it is sufficient to pass xa(n),i, ya(n),i,
{u(k)a(n),i}

UTi−2
k=0 , and {v(k)a(n),i}

DTi−2
k=0 to node n, all of which

comes from the parent node a(n).
Moreover, SDDiP requires all state variables to be binary. In

MSUC, generator states (x) and commitment decisions (u, v)
are already binary, however, the dispatch decision (y) is contin-
uous. To resolve this issue, we discretize the dispatch decision
y using a binary approximation. In particular, a continuous
state variable y ∈ [0, U ] can be approximated to any precision
of ε ∈ (0, 1) as y =

∑κ
i=1 2i−1ελi where λi ∈ {0, 1} and

κ = blog2(U/ε)c+ 1. Note that |y −
∑κ
i=1 2i−1ελi| ≤ ε. The

total number k of binary variables introduced to approximate
the d state variables thus satisfies k ≤ d(blog2(U/ε)c + 1).
Once the continuous state variables yni are binarized, the
Lagrangian cuts introduced in Section II-D2 will be tight for
approximating the ECGF function and the SDDiP algorithm
is guaranteed to converge to global optimality of the MSUC
problem (4).

IV. SDDIP ENHANCEMENTS

In this section, we describe several enhancements to the
basic SDDiP method described previously.

A. level method for Lagrangian Cut

To obtain the cut coefficients of the Lagrangian cuts, one
needs to solve the Lagrangian dual problem (Rijt ) for each
problem in the forward step. This is a non-smooth convex
optimization problem. A popular approach to solve such
problems is the subgradient method (see e.g.,[31]). However,
it is well known that the subgradient method can be very slow.

We propose to use a stabilized cutting plane method, called the
level method, to solve (Rijt ). The level method dynamically
constructs a convex piecewise linear underestimation function
of the original objective using subgradient information, then
solves this approximate problem and projects a minimizer
of the model function to an appropriate level set so that its
objective value lies in some neighborhood of the objective of
the current iterate [32]. In this way the iterates are regularized
and the method achieves a theoretical optimal convergence rate.
It has also been proven to be very effective in practice [32]. In
Section VI, we show the advantage of the level method over
the basic subgradient algorithm for obtaining Lagrangian cut
coefficients.

B. Hybrid Model using “Breakstage”

The quality of a policy obtained by SDDiP depends on
the quality of the approximation of the ECTG in each stage.
Intuitively, the stages further in the future has less influence on
the decisions of earlier stages. Motivated by this, we propose
a hybrid modeling approach, which allows us to improve the
solution time while not compromising its quality to a large
extent. This approximation relies on a prescribed stage tb, which
we will refer to as the breakstage hereafter. More specifically,
in any decision stage before tb, we solve the P it (x

i
t−1, ψ

i+1
t , ξjt )

in the forward step, where state variables are all binary after
binarizing the dispatch decision yni’s. From stage tb onward,
we use the original continuous state variable yni’s without
binarization. All three types of cuts at every stage are still
valid, except that the Lagrangian cuts after tb are not guaranteed
to be tight.

In our experiments, we further relax all integrality constraints
after tb to improve solution time. As a result, only Benders cuts
are added for stage problems after tb. If tb = 0, the method
reduces to SDDP applied to the LP relaxation of the original
formulation; if tb = T + 1, the fully discretized problem is
solved by SDDiP. The breakstage gives us the flexibility to
evaluate the trade-off between solution time and solution quality.
Solving the LP relaxation and using a state space of smaller
dimension both contribute to the reduction of solution time. In
addition, one can always adjust the policy if new information,
e.g., a more accurate renewable generation forecast, becomes
available.

C. Backward Parallelization

In the backward step of SDDiP, multiple scenario problems
are solved, then the cut coefficients returned by each of them
are aggregated to produce a cut for its previous stage problem.
Since these scenario problems are independent from each other,
we implement a parallelization scheme using the OpenMP API
to speed up the backward step.

V. EXPERIMENTAL SETTINGS

In this section, we discuss our experimental settings. The
14-bus system has 5 generators, 20 transmission lines, and 11
demand buses; and the 118-bus system includes 54 generators,
186 transmission lines, and 91 demand buses. Most data about
the physical electrical network is from MatPower 6.0. Ramping
limit is set to be 80% of the maximum generation capacity or



TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS, SEPTEMBER 2018 6

specified otherwise. Minimum up and down times vary from 1
to 10 hours. To avoid infeasibility, slack variables are added
to the load balance constraints and penalized with a large cost
in the objective function. All penalty costs are assumed to be
$5000 per MW.

A. Problem Scale and Intractability by Existing Methods

Deriving strengthened Benders cuts and Lagrangian cuts
require solving MIPs in each stage. Therefore, the size of the
stage problem greatly affects the solution time. In the 14-bus
system, each nodal problem (2) has 127 binary state variables,
10 integer local variables, and 174 continuous local variables.
For the 118-bus system, the corresponding numbers are 1086,
108, and 1514. The total number decision variables of the
MSUC problem is the above numbers of variables in a nodal
problem multiplied with the number of nodes in the scenario
tree. In a scenario tree of 24 stages with 20 branches in each
stage that we will test our algorithm on, the number of nodes
is 2023. Therefore, the total number of integer decisions in the
14-bus MSUC models is over 1032 and this number is over
1033 for the 118-bus MSUC model. Neither 14-bus nor 118-bus
MSUC models can be solved by any of the existing methods
due to their complexity introduced by integer decisions and
their sheer size. To the best of our knowledge, the proposed
sampling-based SDDiP algorithm is the first one that can solve
such huge-scale MSUC problems to near-optimality as we will
show below.

B. Scenario Tree Generation

To generate a recombining scenario tree, we start with a given
net load in the first stage (12am, t = 1). At each following
hour t, net load D̃t is generated from a nominal net load
Dt according to D̃t = Dt · ξt, where ξt ∼ Ξt, and Ξt is
an estimated distribution from historical data. The total net
load across the network is then allocated to each load bus
according to the ratio implied from the base load profile, i.e.,
the proportion of the net load at each bus is the same for all
realizations within the same stage.

For the 14-bus system, we assume ξt follows a uniform
distribution U(1− α, 1 + α) for all t > 1, and α ∈ [0.1, 0.3].
Six types of scenarios trees are generated, each of them is
characterized by net load variation (α) and the number of
outcomes at each stage (β). The corresponding tree is denoted
by T α,β14 . In our experiments, we consider α = 0.1, 0.2, 0.3 and
β = 10, 20. For the 118-bus system, we use a truncated normal
distribution, which is estimated based on data from California
ISO website. We used the hourly net load forecast and the
actual net load data across the entire California network in
February 2017. The forecast is generated day ahead. For each
hour, the distribution of forecast-to-actual ratio is approximated
by a normal distribution. We assume ξt ∼ TN(µt, k

2σ2
t ),

where TN(µt, k
2σ2
t ) is the normal distribution N (µt, k

2σ2
t )

truncated between µt ± 3kσt, and µt, σt are estimated from
historical data. The scenario tree, denoted by T k,β118 , is then
characterized by k and the number of outcomes at each stage
(β). In our experiments, we fix β = 20 and consider k varying
from 1.0 to 1.3. Note that k = 1.3 represents a situation
with very significant uncertainty in net load. Figure 2 is an

illustration of 50 independent scenarios from scenario tree
T 0.2,20
14 (left) and T 1.3,20

118 (right).

Fig. 2: 50 scenarios from scenario trees T 0.2,20
14 (left) and

T 1.3,20
118 (right).

C. Other Implementation Details

In the forward step of the SDDiP algorithm, we generate
candidate solutions for five independent sample paths, and in
the backward step, we evaluate two of them which result in
the highest cost. The Lagrangian dual problem is solved to
optimality using a basic subgradient algorithm and the level
method with an optimality tolerance of 10−4 for the 14-bus
system and 5 × 10−4 for the 118-bus system, respectively.
Other relative MIP tolerance is set to be the same as above
for each system. The SDDiP algorithm is implemented in C++
with CPLEX 12.7.0 to solve the MIP and LP subproblems.
All experiments are performed on a 16-core machine with
Intel Xeon E5-2630 v3 @2.40GHz CPUs and 128GB of main
memory. Reported solution times are wall clock times.

VI. COMPUTATIONAL RESULTS

Our experiments consist of two phases: Phase I, run SDDiP
and obtain a UC and dispatch policy on a scenario tree; Phase
II, evaluate the obtained policy on a new tree. For this purpose,
we generate two scenario trees for each type (i.e. for each fixed
value of (α, β) of T α,β14 and (k, β) of T k,β118 ), the first one used
in Phase I and the other used for evaluation in Phase II.

In Phase I, we solve SDDiP with different breakstages (tb).
As mentioed earlier, when tb = 0, SDDiP reduces to standard
SDDP. If tb = 1, nothing changes except that the first-stage
problem becomes an MIP. When tb > 1, other types of cuts may
be added to the stage problems before tb− 1. In particular, we
consider five different cut combinations: Benders cut only (B),
strengthened Benders cut only (SB), Lagrangian cut obtained by
subgradient method (Sub), Lagrangian cut obtained by the level
method (Level), and strengthened Benders cut plus Lagrangian
cut obtained by the level method (SB + Level).

Once tb and cut families are determined, SDDiP starts. In
the first half of iterations, we ignore any integrality constraints
and only turn on Benders cuts to get a rough estimation of
the ECTG functions. In the second half, we restore these
integrality constraints and add other types of cuts to improve
the estimation. The final statistical upper bound is evaluated
based on a set of 800 independent forward sample paths. SDDiP
terminates after a fixed number of iterations.

In Phase II, we reinforce the integrality constraints in
stage problems after tb. A set of 800 scenarios is sampled
independently from the second scenario tree, forward problems
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are solved with the policy obtained in Phase I, and the cost
associated with each scenario is recorded. The performance of
the policy is evaluated by comparing the lower bound returned
by SDDiP in Phase I, with the right endpoint of 95%-CI for
the sample mean of scenario costs obtained from Phase II. All
results in this section are averaged over 3 independent runs. We
discuss our findings with respect to following three questions:

1) Which cut combination(s) perform the best in SDDiP?
2) What is the effect of different choices of breakstage?
3) What is the speed-up ratio and parallel efficiency from

the backward parallelization?

A. Results for 14-bus MSUC

1) Cut Combinations: To test the power of different families
of cuts, we solve each instance with breakstage tb = 25, i.e.,
the fully binary problem. In the forward step, we solve MIPs
to obtain binary candidate solutions, and in the backward step,
different cuts are generated by evaluating these solutions. The
power of each cut family is assessed based on SDDiP gap,
solution time, and evaluation gap. The number of iterations in
SDDiP is fixed at 150 for instances with α = 0.1, 0.2 and 500
for instances with α = 0.3. Figures 3-4 show the SDDiP results
of the six instances with different cut combinations. Figure
3 presents the optimality gap between the final lower bound
and statistical upper bound. Figure 4 contains the solution
time of the SDDiP algorithm. The horizontal axis indicates the
instances indexed by the (α, β) pair.

Fig. 3: SDDiP optimality gaps for different cut combinations.

Fig. 4: SDDiP running times for different cut combinations.

Clearly, SB+Level and Level yield the smallest gap with
a reasonable solution time among all. When the net load
variation is small, using any type of these cuts is sufficient.
When the variation becomes bigger, however, at least one
family of tight cuts is needed to close the gap. Strengthened
Benders cut slightly improves the SDDiP gap over only using
Benders cut. Lagrangian cuts significantly improves the SDDiP
gap over strengthened Benders cut. In addition, it is evident
that the level method significantly outperforms the subgradient
method in closing optimality gap with moderate increase in
computation time.

Fig. 5: Evaluation of policies obtained by different cut
combinations.

The Phase II evaluation results are summarized in Figure 5.
SB+Level and Level produce the most stable policies and
yield the tightest statistic upper bound estimation. The policy
approximated by Lagrangian cuts using subgradient method is
again shown to be inferior to the one with the level method.
In addition, we can observe a large evaluation gap for the
policy characterized by the strengthened Benders cut in the
instance (0.3, 10). A possible reason is that 10 realizations per
stage is not enough to represent the uncertainty with such big
variation, the scenario tree used in the evaluation phase has
some extreme scenarios not assessed in Phase I.

In summary, SB+Level or Level is the best cut combi-
nation for SDDiP, and solving the Lagrangian dual problem
using the level method is more efficient and stable.

2) Effect of Breakstage: We next study the hybrid modeling
approach proposed in Section IV-B. In particular, we choose
6 values for tb, ranging from 0 to 25. When tb = 0, the
standard SDDP algorithm is used to solve the LP relaxation
of the original problem. When tb > 1, both strengthened
Benders cuts and Lagrangian cuts (using the level method) are
used in the backward step for stage problems before tb. The
number of iterations in SDDiP is fixed at 150 for instances
with α = 0.1, 0.2 and 500 for instances with α = 0.3.

Figure 6 shows the optimality gap achieved in evaluation
phase. We see that for instances with small net load variation
(α ≤ 0.2), very small breakstages are sufficient to find very
good solution with optimality gap less than 1%. When the
uncertainty variation is high (α = 0.3), optimality gap quickly
decreases for tb ≥ 12. Figure 7 shows that the solution time for
the SDDiP algorithm increases as the breakstage tb increases.
This is simply because more MIPs are solved as tb increases.
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Fig. 6: Effect of breakstage on SDDiP optimality gap.

Fig. 7: Effect of breakstage on SDDiP running time.

3) Backward Parallelization: Let T (k) be the solution time
when k threads are used. We define speed-up ratio by T (1)

T (k) ,

and efficiency by k T (1)
T (k) . Figure 8 depicts an average speed-

up ratio and efficiency graph with respect to the number of
threads for a particular instance. We use 32 threads in all of our
computation experiments. On average, the maximum speed-up
ratio is 4.8 with an efficiency of 15%.
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Fig. 8: Parallelization speed-up ratio & efficiency (T 0.2,20
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instance).

B. 118-bus Results

Similar to the 14-bus system, the experiments for the 118-
bus system also consists of two phases: SDDiP and policy
evaluation. We fix β = 20 in each scenario tree tested. An
instance involves 2023 scenarios and over 1033 binary variables.
Each instance is indexed by a pair (r, k), where r is ramping
ratio with respect to the output capacity, and k is the parameter
in the truncated normal distribution. We consider 12 instances
with r = 0.9, 0.8, 0.7 and k = 1.0, 1.1, 1.2, 1.3. A smaller r
indicates more restricted ramping constraints, while a larger k
value suggests a more volatile scenario tree. Here, we do not
consider k bigger than 1.3 because a larger value incurs a net
load which exceeds the system’s total generation capacity.

TABLE I: Computational results for 118-bus system

Instance Time Eval. Gap Instance Time Eval. Gap
(r, k) (sec.) (%) (r, k) (sec.) (%)

(0.9, 1.0) 4389 [0.47, 0.68] (0.8, 1.2) 4424 [0.51, 0.75]
(0.9, 1.1) 4387 [0.51, 0.59] (0.8, 1.3) 4455 [0.55, 0.96]
(0.9, 1.2) 4394 [0.50, 0.77] (0.7, 1.0) 4389 [0.37, 0.63]
(0.9, 1.3) 4405 [0.55, 0.69] (0.7, 1.1) 4427 [0.58, 0.84]
(0.8, 1.0) 4333 [0.48, 0.63] (0.7, 1.2) 4455 [0.50, 1.12]
(0.8, 1.1) 4362 [0.48, 0.58] (0.7, 1.3) 4521 [0.67, 1.28]

Table I contains the SDDiP computation time and evaluation
results for the 118-bus system. The results indicate using SDDiP
with Benders cut only is sufficient to produce an accurate
(0.47%-1.28% gap) within 1.25 hours. This could be due to
the tight formulation of a single scenario deterministic UC
problem. To verify the tightness of the LP relaxation gap, we
independently generate 100 scenarios from the most volatile
load distribution (k = 1.3), and solve a deterministic 24-hour
UC problem and its LP relaxation for each of the scenarios.
The ramping limit is set to be 70% of the maximum generation
capacity. Indeed, the average LP gap over these 100 instances
is only 0.254%. Given that our uncertainty variation is based
on real data, such a small LP relaxation gap suggests that the
SDDiP with standard Benders cut is good enough to solve this
large-scale MSUC instance.

VII. CONCLUSION

In this paper, we propose a stagewise-decomposition algo-
rithm based on SDDiP with various algorithmic enhancements
to solve large-scale MSUC problems. Systematic numerical
experiments demonstrate that the proposed algorithm can
successfully handle MSUC problems with a huge number of
scenarios that were impossible for existing methods. It is also
verified that Lagrangian cuts are indispensable in achieving
exact solution and convergence. Our experiments show that
when solving the Lagrangian relaxation of the stage problem,
the level method performs superior to the standard subgradient
method. We also observe that for the 118-bus system, it suffices
to use SDDiP with only standard Benders cuts to obtain a good
policy.

There are several interesting future research questions related
to MSUC. In this paper, we decompose the 24-hour MSUC
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problem on an hourly basis. An alternative is to consolidate
several consecutive hours into one stage. Such a formulation
increases the size of a stage problem but reduces the total
number of decision stages. It would be interesting to investigate
how such an aggregated model compares to the hourly based
multistage model. Another direction is to study the MSUC
problem under a risk-averse setting, as system reliability is of
utmost importance in practice.
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and R. Gollmer, “Stochastic power generation unit com-
mitment in electricity markets: A novel formulation and a
comparison of solution methods,” Oper. Research, vol. 57,
no. 1, pp. 32–46, 2009.

[24] J. Wang, J. Wang, C. Liu, and J. P. Ruiz, “Stochastic
unit commitment with sub-hourly dispatch constraints,”
Applied energy, vol. 105, pp. 418–422, 2013.

[25] Q. P. Zheng, J. Wang, P. M. Pardalos, and Y. Guan, “A
decomposition approach to the two-stage stochastic unit
commitment problem,” Annals of Oper. Research, vol.
210, no. 1, pp. 387–410, 2013.

[26] S. Cerisola, J. M. Latorre, and A. Ramos, “Stochastic dual
dynamic programming applied to nonconvex hydrothermal
models,” European Journal of Operational Research, vol.
218, no. 3, pp. 687–697, 2012.

[27] G. Steeger and S. Rebennack, “Dynamic convexification
within nested Benders decomposition using Lagrangian
relaxation,” European Journal of Operations Research,
pp. 669–686, 2017.

[28] J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dy-
namic integer programming,” Mathematical Programming,
2018 (to appear).

[29] A. Shapiro, “Analysis of stochastic dual dynamic pro-
gramming method,” European Journal of Operational
Research, vol. 209, no. 1, pp. 63–72, 2011.



TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS, SEPTEMBER 2018 10

[30] J. Zou, “Large scale multistage stochastic integer pro-
gramming with applications in electric power systems.”

[31] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient
methods,” lecture notes of EE392o, Stanford University,
Autumn Quarter, vol. 2004, 2003.
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